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Labeling self-tracked menstrual health records
with hidden semi-Markov models
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Abstract— Globally, millions of women track their men-
strual cycle and fertility via smartphone-based health apps,
generating multivariate time series with frequent missing
data. To leverage this type of data for studies of fertility or
studies of the effect of the menstrual cycle on symptoms
and diseases, it is critical to have methods for identifying
reproductive events, such as ovulation, pregnancy losses
or births. Here, we present a hierarchical approach relying
on hidden semi-Markov models that adapts to changes in
tracking behavior, explicitly captures variable— and state—
dependent missingness, allows for variables of different
type, and quantifies uncertainty. The accuracy on simulated
data reaches 98% with no missing data and 90% with realis-
tic missingness. On our partially labeled real-world time se-
ries, the accuracy reaches 93%. Our method also accurately
predicts cycle length by learning user characteristics. Its
implementation is publicly available (HiddenSemiMarkov R
package) and transferable to any health time series, includ-
ing self-reported symptoms and occasional tests.

Index Terms— Hidden semi-Markov models (HSMM), Dig-
ital health, Gynecology, Fertility, Mobile applications, Un-
supervised learning, Semisupervised learning, Statistical
learning

[. INTRODUCTION

EALTH tracking apps have become increasingly popular

and self-reported health records collected via apps or
connected devices are progressively adopted by the scien-
tific community for personalized health or epidemiological
research [1]. Menstrual cycle and fertility tracking apps are
among the most used health apps [2]. These apps are now
used by millions of women worldwide, generating very large
datasets of self-reports related to the menstrual cycle and
reproductive events. Users of these apps typically report their
period bleeding along with physical or psychological symp-
toms and/or fertility-related body-signs.

These large datasets have already been used to charac-
terize the duration of the menstrual cycle and the follicular
(before ovulation) and luteal (after ovulation) phases [3]-
[5], to evaluate the association between sexually transmit-
table infections (STI) and pre-menstrual symptoms [6] and
to evaluate the association between cycle length irregularities
and reported symptoms [7]. In addition to these findings,
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this data indubitably holds additional information on fertil-
ity, pregnancy losses and menstrual health in general. This
information can be used to tackle scientific challenges and
address unanswered questions about the human reproductive
biology. For example, this data can be used to evaluate whether
seasonal and geographical variations of fertility [8] is due
to changes in ovulation or loss rates or to study, at large
scale, the predictability of mental health variations throughout
the menstrual cycle [9], [10]. Beyond the potential of these
large retrospective datasets, apps and/or connected devices also
provide a scalable way to prospectively collect longitudinal
data of menstrual-health related body signs and symptoms for
a large population size over a long period of time without
requiring in-person visits to a clinic. The prospective digital
collection of data related to fertility and menstrual health
provides an opportunity to evaluate the association between
the menstrual cycle or reproductive status and other health
variables at large scale.

A first challenge in using such self-reported data is the
contextualization of each observation within the reproductive
timeline of an individual. The interpretation of a reported
symptom varies greatly if the individual is pregnant or go-
ing through a long anovulatory phase. This contextualization
requires the labeling of users’ time series with biologically-
relevant states such as “pregnant” or “ovulating”.

Labeling self-tracked datasets can be a challenging process
given the multivariate nature of the datasets, the prevalence
of missing data, and the lack of available ground-truth. To
our knowledge, there are no available labeled datasets for
menstrual self-tracked data. Thus, supervised labeling methods
such as Long-Short-Term-Memory (LSTM) models [11], [12],
or Transformers [13], cannot be used. Fortunately, this lack of
available labeled samples is balanced by a good knowledge
of the underlying reproductive biology. This knowledge can
be translated into statistical priors and inform the design of
unsupervised or generative models.

For example, it has been well documented that cervical
mucus properties and quantities are controlled by cycling
reproductive hormones [14]-[16] and that these changes can be
observed and reported by app users [3], [5]. Body temperature
at wake-up has been shown to increase after ovulation and
in early pregnancy [15], [17]. Concentration in luteinizing
hormone (LH) surges before ovulation [15], [18] and this surge
can be detected by cheap at-home urine kits [19]. Bleeding, the
most obvious body-sign to report in a menstrual-cycle tracking
app, is highly correlated with menses (periods), pregnancy
losses or births. Light bleeding may also be indicative of
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ovulation or be reported in early pregnancy [20], [21].

Hidden state models are appropriate for labeling self-tracked
time series because the underlying biological states can be
matched to the model’s hidden states. In the medical liter-
ature, the menstrual cycle is frequently split into successive
phases (menses, early follicular phase, peri-ovulatory phase,
early and late luteal phases) and pregnancies are frequently
divided into trimesters. Given that these phases have been well
characterized, they can be naturally translated into a discrete
state model: each latent state matches one of the menstrual or
pregnancy phases. In previous work, hidden Markov models
(HMM), the most common discrete hidden state model for
time series, have been used to label menstrual-cycle time series
[3]. However, the Markovian property imposes a geometrical
distribution for the duration of each state, which does not
accurately model the menstrual or pregnancy phases. Hidden
Markov models only performed well in labeling single cycles
whose start and ends were already identified and where users
had reported enough data to constrain the duration of each
phase. Others have proposed cyclic HMM (CyHMM) to re-
cover cycle characteristics from menstrual cycle app data [22].
While this framework is successful in identifying cycles, it did
not include prior biological knowledge beyond the average cy-
cle length. Consequently, the hidden states can not directly be
matched to and interpreted as biological states. Additionally,
because that framework assumed cycles with relatively small
variations in length, it was suitable for identifying menstrual
cycles but not pregnancies or post-partum states, preventing
the labeling of such events.

Hidden semi-Markov models (HSMM) allow for non-
geometric distributions of state duration, called state sojourn”
in the semi-Markov context. HSMMs can be approximated,
often exactly, by HMMs in which HSMM states are divided
into chains of sub-states with specific transition probabilities
[23]. The HMM approach is especially efficient when the
sojourns of each state remain relatively short. However that
approach loses its benefits if some states are very long or
if one wishes to impose constraints on the type of sojourn
distribution. Given the duration of states, such as pregnancy
or breast-feeding, and the prior knowledge available on the
duration of pregnancies, the HSMM approach is more suited
to the task.

While hidden semi-Markov models have been used in a
large variety of applications, ranging from biological sequence
analyses [24] to modeling financial market variations [25],
[26], there are, to our knowledge, no previous implementations
that fulfill the requirements of our task. In particular, the
‘hsmm* package by Bulla et al. [27] did not allow for decod-
ing of sequences with missing observations. The ‘mhsmm*
package by O’Connell et al. [28] allows for missing data-
points and for users to define their own functions for various
emission distributions. However, four features were critically
lacking for our task. First, while it allows for missing time-
points, it only enables all variables to be missing at a given
time-point. If only one variable is missing, the values of the
other variables were not taken into account. In our case, given
the sparsity of our dataset, this implied losing over 90% of
our data. In addition, this package did not allow users to

define state-dependent censoring probabilities. However, users
of fertility apps modify their tracking behavior depending on
their biological state and their reproductive objectives. We thus
wanted a method which took advantage of this “informative
missingness”. Third, while the ‘mhsmm* package allows for
multivariate time-series, its current implementation relies on
multivariate Gaussian variables. Finally, the ‘mhsmm* package
does not allow users to define different sojourn distributions
for each state. In our case, reproductive states might be best de-
scribed by different distributions. Consequently, we developed
a new package, which addressed all of our task requirements,
offers more flexibility in terms of variable distributions, and
provides a suite of visualization and interactive labeling tools
to facilitate its use.

Our contributions are (a) the adaptation of hidden semi-
Markov models to decode censored multivariate time series,
(b) the implementation of these changes in a publicly avail-
able R package (HiddenSemiMarkov), (c) the definition
of a HSMM describing the reproductive biology and (d) a
hierarchical method relying on HSMMs which accounts for
long-term changes in tracking behavior.

We evaluate the performances of our method on a real-
world dataset and compare them to those of a HMM and of a
HSMM with weak priors. In order to quantify the sensitivity
of the decoding accuracy to increased levels of sparsity, we
simulated a synthetic dataset with varying amounts of missing
data. Finally, we evaluate the ability of our model to learn
individuals’ cycle characteristics by quantifying the error on
cycle length prediction.

Our real-world data is a de-identified dataset provided by
the menstrual cycle and fertility tracking app Kindara (see
Materials and Methods). This dataset was composed of the
self-tracked logs of 64 long-term users of the app. The features
reported by users were (1) their bleeding flow (none, spotting,
light, medium, heavy), (2) the consistency of their cervical
mucus (none, creamy, egg-white, watery, sticky) and the quan-
tity (little, medium, lots) when it was not missing, (3) their
body temperature, in Fahrenheit, and whether they marked
their temperature measurement as “questionable”, which is
recommended by the app if the value is oddly low or high or if
the user did not sleep enough hours, (4) the results of LH tests
(positive or negative) and (5) the results of pregnancy tests
(Fig [I). Each of these features can be reported daily by users.
However, users do not report all of these features every day
and there is a large variability in tracking frequency between
users [3]. Missing data are very frequent. The average tracking
frequency is just above 50%, which means that on average
users open and log a feature in the app approximately every
other day, but it may be as low as 16% or as high as 100%
for some users (see Table[l). Fig[Tp provides two examples of
time series logged by app users.

Given the generative nature of our model, a synthetic dataset
was simulated from our HSMM with various amounts of
missing data so that the effect of tracking frequency on
accuracy could be evaluated (Methods).
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Fig. 1.

Data acquisition and time series examples. (a) Snapshot of the tracking screen of the Kindara app. (b) Examples of time series tracked

by two users of the app. For all features, the absence of vertical line indicates missing data for that variable. In the bleeding line (top), gray lines
indicate 'no bleeding’, orange/red lines mean that bleeding was reported. Darker reds indicate heavier bleeding flow. In the LH and pregnancy test
lines (2nd and last lines), red lines indicate negative tests, blue lines positive ones. Temperature is depicted by a gradient ranging from blue for
temperatures below the user’s median value to red for temperatures above the median value. No mucus (3rd line) is depicted by gray lines, while
fertile mucus is indicated in blue, sticky mucus in yellow and creamy one in beige.

TABLE |
STATISTICS ON USERS’ TRACKING BEHAVIOR.
percentiles

metric mean median min Sth  95th max
tracking frequencies

Overall 0.55 047 0.16 020 0.99 1.00
Temperature 0.30 0.14  0.00 0.00 092 1.00
Mucus 0.18 0.06 0.00 0.00 073 099
LH test 0.01 0.00 0.00 0.00 0.06 0.26
Pregnancy test 0.00 0.00 0.00 0.00 002 0.04
Longest consecutive

missing days 183.5 55.0 1 7 712 1386
tracked days 3339 141.5 7 11 1474 2604

Il. MATERIALS AND METHODS

In the first part of this section, we detail the adaptations
brought to hidden semi-Markov models for multivariate time
series with state— and variable— dependent missingness. The
second part of this section details our HSMM of the female
reproductive biology. The third one describes our hierarchical
approach to account for changes in tracking behavior. Fourth,
we describe the datasets used to assess performances, and
finally we define the experiments and metrics used to assess
the performances of our model.

A. Hidden semi-Markov models for multivariate time
series with state— and variable— dependent missingness

Our task is to label time series with a sequence of hidden
states. In the context of hidden (Semi-)Markov models, two
algorithms may be used for this purpose: the Viterbi and the
Forward-Backward algorithms. The Viterbi algorithm returns
the most likely sequence of hidden states, i.e. the sequence of
hidden states that maximizes the likelihood of the sequence of
observations (see below). The Forward-Backward algorithm
returns the probability of each state at each time-point, i.e.
P(S; = j|X), where S; is the state at time-point ¢, j is one
of the J hidden states of the model and X is the sequence of
observations. Efficient versions of these algorithms for hidden
semi-Markov models have been proposed by Guédon et al.
[29] and implemented in C by O’Connel and Hojsgaard [28].
This C implementation is used in our R package, with a minor
correction of the backtracking step for the Viterbi algorithm.
Below, we introduce the HSMM notation and methods and
describe the adaptations introduced to decode censored multi-
variate time-series.

1) Notation and model parameters: In general, hidden semi-
Markov models are defined by the following set of parameters:
J is the number of states, 7 are the initial probabilities (7; =
P(S1 = j)), T are the transition probabilities (T} , = P(S; =
JISt—1 = k)), {d;(u)};=1..; are the sojourn distributions
for each state, i.e. the distributions of the time spent in a
given state (u is the relative time variable since the last
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state transition), and e, ; are the emission probabilities for
each state, i.e. P(X = z|S = j). This set of parameters
is represented by 6. X is a random variable measured at a
sequence of time-points and may be discrete, continuous or
categorical. It is either observed, taking a value x, or missing,
taking the value @. We use the shorthand notation X for a
sequence of observations of length N: X = (z1,22,...,ZN).
A sequence of hidden state is written as s = (s1, S2,...,SN);
s; or x; is the shorthand notation for s;—; or x;—;.

2) Likelihood of a sequence of observation and hidden state
predictions: The likelihood of a sequence of observations given
a sequence of hidden states and the model parameters is given
by:

P(X‘s79) = 7r81d81 (ul) TSR—lysR‘DSR(uR)
N

R
(H T, 15, ds,(ur)) HP(5E1|51)

i=1

where g, is the probability associated with the first state of the
sequence, ds, (u1) is the sojourn probability of the first state,
with u the relative time spent within a state, r is an index going
through the sequence of states (regardless of their duration)
while ¢ is an index running along the observation sequence
(time-points), s, is the rth state in the state sequence, T, | s,
is the transition probability between the state preceding the rth
state and the rth state, ds, (u,) is the sojourn probability of the
rth state, R is the length of the state sequence and Dy, (ug) is
the ’survivor” sojourn probability of the sequence’s last state,
i.e. is it the probability that the state lasts ugr or longer.

3) Fitting model parameters to observations: HSMMs
are usually fitted to sequences of observations using an
Expectation-Maximization (EM) approach which alternates be-
tween E-step, in which the hidden states sequence is estimated
and the likelihood is computed given the current parameter
values, and an M-step, in which the parameters are updated to
maximize the likelihood. These two steps are repeated until the
gain in likelihood is smaller than a given threshold. The fitted
model is the set of parameters maximizing the likelihood of
the observed sequences, i.e. the maximum likelihood estimator
0* = argmaxy P(X|0)

The Forward-Backward algorithm proposed by Guédon et
al. [29] is used in the E-step to obtain the probability of
each state at each time-point. In the M-step, the emission
parameters are updated using these probabilities as weights
on the observations.

4) Multivariate data: In the case of multivariate data, each
time-point ¢ is associated to a random vector of length K:
(X} X2, ..., XX). In our case, the first variable is bleeding,
the second is mucus, the third is temperature, etc. To adapt
for multivariate data, we need to specify the joint emis-
sion probabilities at time-point i, ie. P(X} = z}, X? =
z2,..., XK = 2K|S; = j) and define how potential within-
state dependencies between the variables are accounted for.

Past research in reproductive biology has mostly focused on
experimentally measuring marginal probabilities. For example,
variations in temperature and in cervical mucus have been
described separately and there is no available literature to

inform us about potential correlations within a particular
hormonal state. We thus assume conditional independence of
the variables given the hidden state when initializing the joint
emission probabilities. Each variable is specified as a non-
parametric distribution or by a distribution family and set of
parameters. For example, temperature, a continuous variable,
may be specified as a normal distribution. Cervical mucus
is a categorical variable and may be described by a non-
parametric distribution. LH and pregnancy tests results are
binary variables (positive or negative results) and may be
described as Bernoulli variables.

These initial specifications are used to list all possible
observable combinations of values and initialize the probabil-
ity associated with each combination as the product of the
marginal probabilities assuming independence conditionally
on the states. As the model parameters are fitted to sequences
of observations, potential within-state dependencies may be
learned as the joint emission probabilities are updated without
assuming independence. In the online supplementary material
(see the code and data availability section), we show how a
model is able to learn such dependencies when the direction of
the correlation between two variables is the only difference be-
tween two states. Computationally, within-state dependencies
can be learned because continuous variables are discretized
into a given number of bins so that all possible combinations
of variable values can be stored in a table. The number and/or
size of the bins can be specified as one of the model parameter.

5) Missing data: the censoring model.: Self-reported health
records are subject to a high level of missingness with large
inter-subject variations, and the tracking frequency of a user
may also change over time. Missing observations may be
modeled as a two-step process: first, users must open the app
on a given day, and second, they must measure and report a
specific variable on that day. Both processes can be modeled
as a Bernoulli events with state-dependent probabilities. The
probability that a user does not open the app on a given day is
p;. The probability that a user did not report a specific variable
k after opening the app is g; .

Altogether, when a hidden semi-Markov is specified, joint
emission probabilities are initialized as:

P(X' X2 .. XK|IS=j)=

K
pj+ (1 —pj) [Tim a5k
if all variables are missing, i.e.V; X k— g

(1= pj) Ikens @ik Iloco (1 — ¢5,0) P(X° = 2°S = j)
otherwise

with M and O being the set of missing/observed variables.

The previous equation reflects that all variables may be
missing because a user did not open the app on a given
day (with probability p;) or because the user opened the app
but (with probability (1 — p;) Hle ¢;,%x) neither measured
nor reported any of the variables. If at least one variable is
reported, that implies that the user opened the app on that
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day (with probability 1 — p;), that all missing variables were
missing with probability g;, and those not missing were
reported with probability (1 —g; ) multiplied by their specific
emission probability.

These initial probabilities are updated in the M-step of
the fitting procedure so that potential dependencies between
variables, including missingness dependencies, may be learned
from sequences of observations.

B. Generative models of the female reproductive cycles

We defined the simplest hidden semi-Markov model that
would as accurately as possible reflect our current knowledge
of the menstrual cycle and pregnancy. States are listed in table
Figures 2p-b show the model graph and the prior sojourn
distributions of most states.

We specified a 19-state model composed of 2 main loops
(Fig. 2h). The first loop is a 7-state chain describing the
successive phases of the menstrual cycles while the second
loop describes the successive events following a conception.
The conception loop further splits into two sub-loops: one
in the event of a pregnancy loss and one in the event of
a birth. The birth branch splits into two scenarios depend-
ing on whether or not the mother breastfeed their newborn
since breastfeeding typically delays the return of menstrual
cycles. In addition to these main loops, two states capture
anovulatory phases. The first one corresponds to cycles in
which quasi-constant bleeding (light or heavy) is reported and
in which no signs of ovulation, such as a positive LH test
or a rising temperature, would be reported. The second one
corresponds to the scenario in which a low temperature is
reported consistently between two bleeding episodes without
abnormal bleeding being reported.

All state transitions are uni-directional except for the tran-
sition between the "high estrogen’ state and the ’low estrogen’
state. This transition is initialized with a low probability and
allows the description of cycles typically experienced by users
suffering of poly-cystic ovary syndrome (PCOS).

The model parameters (sojourn and emission distributions)
were specified to match the observed biological ranges and
typical values. Menses last between 2 and 8 days [20]. The
early follicular is the most variable phase of the menstrual
cycle. Its typical duration is 3 to 8 days but can last longer
in individuals with long cycles [30]. We thus specified its
sojourn with a long tail. This phase is characterized by low,
slowly increasing estradiol levels, medium-high FSH levels,
and low progesterone levels. Consequently, cervical mucus,
whose production depends on estradiol [31], is rarely observed
[3], and temperatures are low as progesterone levels are low
[32]. In the late follicular phase, estradiol levels are rising
sharply, leading to mucus production, while FSH levels are
decreasing. This phase has been reported to last 2-5 days [30].
We defined a pre-ovulatory state (pre-O) with a fixed sojourn
of one day, distinct from the late follicular state because the
probability of a positive LH test is higher in *pre-O’ since LH
starts pulsing in the day leading to ovulation. The ovulation
state has a fixed sojourn of one day as ovulation is a brief
event and that the temporal resolution of our data is of 1 day.

The duration of the luteal phase, which starts after ovulation,
is known to vary less inter— and intra—individually than the
follicular phase [3], [5], [33]-[36]. In the luteal phase, given
elevated progesterone levels, the basal body temperature is
higher than in the follicular phase. However, past studies have
shown that it takes a few days before the temperature reaches
its highest plateau [3]. Thus, we divided the luteal phases
into two states. The first one (post-O), of fixed duration (two
days), follows the ovulation state. The second one (Luteal),
lasts about 11 days with a slight skew for shorter durations.

Although anovulatory cycles are not well described in the
literature, owing to the difficulty of assessing the absence
of ovulation, we included an *Ano’ state which follows the
early follicular phase and is characterized by both frequent
observation and low temperatures. We specified it with a mean
duration of 15 days and a 6-day variance, based on the results
from Malcolm et al. [37] and Prior et al. [38].

Anovulation may also be occurring in individuals experienc-
ing prolonged periods of light to heavy uterine bleeding. We
thus defined the ’Anovulatory with bleeding’ state. This state
is not very well characterized in duration from the existing
literature but has been reported by patients [20] and users of
the app. We thus specified a sojourn distribution ranging from
height to a hundred days for this state.

When conception happens, the 7-8 days following fertil-
ization (ovulation) are very similar to a luteal phase when
no conception happens. However, once the fertilized egg
implants, this initiates the production of the HCG hormone,
which can be detected in urine by pregnancy tests. Additional
progesterone production leads to an increase or sustained
plateau of high temperatures. After implantation, pregnancies
may be interrupted (spontaneous or induced pregnancy loss)
or continue, leading to a birth. Consequently, we designed our
model such that, from an implantation state (P), the model
allows two transitions: ones towards the "PL’ state (pregnancy
with loss) or one towards the first trimester of a pregnancy
without loss (PB1). We fixed the duration of the implantation
state to 17 days, which is longer than the longest reported
luteal phases. In that state, temperatures are high, positive
pregnancy tests are likely, and censoring probabilities are
lower than in the subsequent states. Indeed, once a blood
test has confirmed the pregnancy, users are less likely to keep
tracking their temperature or to report pregnancy test results.

The ’Pregnancy with Loss’ state has a highly skewed
sojourn distribution as losses occurring early in pregnancy are
much more common than late losses [39], [40]. The following
state, the loss (L) state, is associated to the moment when the
loss occurs. Losses often lead to uterine bleeding for a few
days, which the app users may report. After a loss, individuals
usually return to ovulatory cycles [41]. However, pregnancy
test results may remain positive for a few days after the loss,
likely due to the residual presence of HCG hormone in urine.
To account for that, we created an additional state, "IEpL’ (for
low-Estrogen post-loss) with the same sojourn and emission
distributions than the '1E’ state, except that positive pregnancy
tests are more likely in that state.

If there is no loss, the model progresses through the three
trimesters of pregnancy. We fixed the duration of the first two
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are luteal phase states). After ovulation, a pregnancy may start ('P) and end-up in a loss ('PL-’L-'IEpL loop) or in a birth (PB1’-’PB2’-’PB3’-'B’-'PP’
(post-partum without breast-feeding) or 'BF’ (breast-feeding) loops). Finally, two anovulatory states are defined: 'AB’ for anovulatory with bleeding
and 'Ano’ for anovulatory without bleeding. See Methods and Supplementary Material for state definition and descriptions. (b) Prior and initial
sojourn distributions for states which do not have a fixed duration. (c) Graph of the generative model assumed to lead to the observed sequences.
(d) Schematic illustrating the hierarchical approach to account for long-term changes in tracking behavior.

trimesters so that the sojourn distribution of the third trimester
embeds the whole observed variability in pregnancy duration.
Indeed, pregnancies last about 38 weeks but preterm birth rates
reach 4-10% depending on countries [42]. Post-term births are
less frequent as births are usually induced when past term.
Consequently, the sojourn duration of the third trimester of
pregnancy is specified as a skewed normal distribution with a
heavier tail for shorter duration.

Finally, following birth, the mother may or not breastfeed
her newborn child. In the absence of breastfeeding, menses
return 6-8 weeks after delivery [43], which means that estra-
diol levels rise 4-6 weeks after delivery. The duration of the
‘post-partum’ state (PP, when mothers do not breastfeed) is

thus described by a normal distribution of mean 5 weeks and
a standard deviation of 10 days. If the mother breastfeeds, this
usually delays the return of ovulatory cycles [44]. Given that
the breastfeeding duration is highly variable [45], the sojourn
for that state is specified as a flat distribution ranging from 7
weeks to over two years.

C. Hierarchical approach to adapt for changes in
tracking behavior

In principle, the tracking behavior does not affect an in-
dividual’s biology. However, it affects our ability to detect
specific reproductive events (Fig [2k). For example, if a user
only tracks their bleeding, it may be impossible to differentiate
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TABLE Il TABLE IlI
STATES OF THE HSMM FOR REPRODUCTIVE EVENTS ADAPTATION OF OUR HSMM DEPENDING ON TRACKED VARIABLES. B:
BLEEDING, LH: LH TESTS, P: PREGNANCY TESTS, T: TEMPERATURE,
# __ Abbr. Names M: MUCUS. PARENTHESES INDICATE OPTIONAL TRACKING.
1 M Menses
2 IE Early Follicular (low estradiol) Tracked variables T ano =0 dhg = 0(2) dpu =9(11) Thg e =0
3 hE Late Follicular (high estradiol) B X X X X
4 preO  Day before ovulation B, P X X X
5 [0) Ovulation B, LH, (P) X X
6 postO  Two days following ovulation B, T, (LH, P) X
7 Lut Luteal phase B. M, (LH, P) X
8 Ano Anovulatory cycle B, T M, (LH, P)
9 AB Anovulatory with bleeding
10 P Implantation (Pregnancy)
i; IP:L Eregnancy with Loss D. Datasets
0SS
13 IEpL.  Low estradiol phase following a loss 1) Real-world dataset: A de-identified dataset was provided
14  PB1 Pregnancy with birth (1st trimester) . .
15 PB2 Pregnancy with birth (2nd trimester) by Prima-Temp (Boulder, Colorado), the company owning the
16 PB3  Pregnancy with birth (3rd trimester) menstrual cycle and fertility tracking app Kindara. This study
i; EP Ei“h was exempted by the Stanford IRB given the de-identified
ostpartum .
9 BF Breastfeeding nature of the dataset. The dataset was lightly pre-processed

early pregnancy losses from long cycles or to pinpoint the
day of ovulation. To lift these identifiability issues, we adapt
our HSMM of reproductive events described in the previous
section to the tracking behavior by fixing the sojourn of some
states or preventing specific state transitions (Table [III).

We proceed in four steps (Fig [2d). First, we decode the
time-series of reported bleeding to roughly identify cycles
and pregnancies. Menses are ideal sub-sequences boundaries
as they are the most likely reproductive event that users
would report in a menstrual cycle tracking app. Second, we
determine the tracking behavior category of each sub-sequence
by examining which variables are reported with sufficient
frequency. Third, we decode each sub-sequence of the mul-
tivariate time-series with the appropriate model, i.e. with the
model for which reported variables within that sub-sequence
will allow identifiability. Finally, because the decoding at the
first step might have contained mistakes since based on a
single variable, we look for discrepancies in predicted states
at the transitions between sub-sequences. If any discrepancy
is found, we decode the time-series from the last menses
preceding the problematic time-points to the next menses
following it.

The four ways that our HSMM for reproductive events
needs to be adapted are as follow (see summary in table
[). First, if temperature is not reported throughout the cycle,
anovulatory cycles cannot be detected from the other variables.
The transition to the ”Ano” state is thus removed. Second, if
mucus is not reported, the sojourn of the "hE” state is fixed
to two days since mucus is the only identifying variable of
that state. Third, if there are no variable allowing for the
identification of ovulation, the sojourn of the luteal phase
is fixed. Finally, if only bleeding is reported, there is no
information to differentiate long cycles from early pregnancy
losses. The transition probability from the "hE” to ”1E” state
is set to zero.

before being labeled using our hidden semi-Markov models
we define in the next section. Temperature reports were trans-
formed into temperature differences from their median value
because the inter-individual variations in temperature are larger
than the within-cycle variations. Specifically, for each user,
temperatures marked by the app users as questionable were
removed from the time series and their median temperature,
computed on the remaining values, was subtracted from their
reported values. Additionally, the 13 different possible mucus
readings were grouped into 5 categories (none, creamy, fertile,
very fertile, sticky) because mucus readings are subjective and
the literature is too sparse to allow the distinction between
these categories (see online supplementary material). Finally,
because bleeding is the most remarkable body-sign associated
with the menstrual cycle, if bleeding was missing on days
when other features were reported, it was assumed to have
the value 'none’.

2) Synthetic dataset: To evaluate the robustness of our
framework to varying amount of missing data, we generated
N, synthetic time series mimicking actual observations by
reverting our decoding approach. We first specified the cen-
soring probabilities p; and g;, such that they matched those of
diligent app users. These probabilities were then scaled up or
down to create five levels of tracking assiduity (Fig 4] online
supplementary material). In addition, slight modifications are
brought to the HSMM to reflect person-specific characteristics
such as a typical luteal phase duration, a specific temperature
shift, etc. Once time-series are simulated, the set of reported
variables within each cycle is randomly selected to reflect
changes in tracking behaviors.

The synthetic dataset is decoded using our hierarchical ap-
proach relying on HSMM (h-HSMM, see below). Performance
metrics (see below) are computed as a function of the tracking
frequency and the set of reported variables.

E. Performance metrics

1) Labeling performance evaluation: We evaluate the perfor-
mances of our framework by measuring its ability to recover
simulated or manually labeled ground-truth. We compute the
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accuracy A defined as A = & "N §(8; — s¥) and the state-
specific accuracy which is defined as A; = N% vaz’l 0(8; —
s7) 6(j — 7).

In order to evaluate whether the model provides a higher un-
certainty on time-points with labeling mistake, we compute the
weighted mean of sample accuracy as A,, = (Zf\il w;(8; —

*

s5))/ (Zf;l w; ) where the sample weights w; are the posterior
state probabilities for the most likely state, i.e. w; = P(S(t =
1) = §;|X;0). Samples in which states are predicted with a
high probability have more weight than samples in which the
model predicted several states with a low probability.

We compare the performances of our approach (h-HSMM)
with those of three baseline methods: h-HMM, h-weak HSMM
and HSMM. The first one (h-HMM) combines our hierarchical
approach (h-) with a HMM for the modeling of the repro-
ductive events. The HMM has the same number of state as
our HSMM and the same emission probabilities. Transition
probabilities are specified such that the associated geometric
distribution best fit the HSMM’s sojourns. The second baseline
method (h-weak HSMM) is similar to the proposed approach
but the sojourns are weakly specified; they have a much
broader distribution than the those proposed in our h-HSMM.
Finally, to evaluate the benefits of the hierarchical approach,
we compare the performances of our h-HSMM with those
of the HSMM alone. We also evaluate the performances of
our method and baseline methods by computing the predicted
duration of pregnancies and comparing them to empirical
distributions.

2) Predicting the next period date in ovulatory cycles.: In
addition to labeling user’s time series, our model can also
be used to predict the date of the next period. While most
individuals have regular cycles (each cycle has approximately
the same duration), many individuals have irregular cycles and
it may be difficult to predict the date of their next period.

To evaluate the ability of our method to learn individual-
specific characteristics, such as their typical temperature in the
follicular or luteal phase or the length of their luteal phase,
we selected users in our dataset with irregular cycles and
compared the predictions from our method with a baseline
method which uses the average cycle length of users.

Specifically, we selected stretches of five consecutive ovu-
latory cycles without pregnancy, fitted our reproductive event
model on the first four cycles and made the prediction for the
length of the fifth cycles. To evaluate if the prediction improves
as the fifth cycle progresses in time, we perform the prediction
from each day since the beginning of the cycle. We decode
the fifth cycle up to a given day, detect the last state transition
and use the fitted sojourn distributions of the remaining states
to predict the total cycle length.

Given that the most variable phase of the cycle is the phase
preceding ovulation, we expected our prediction to improve
once ovulation is detected. We report the mean square error
(MSE) between the predicted and the actual length of the fifth
cycle and compare it with the MSE when using the average
cycle length of the four previous cycle to predict the length
of the fifth cycle.

[1l. RESULTS
A. Labeling performance on the Kindara dataset

To quantify the performances on our dataset, we used
the interactive app embedded in our HiddenSemiMarkov
package to manually label about 11% of our dataset. These
labels were independently validated by a fertility awareness
methods expert (see Acknowledgments) and are shown for
the full dataset in the online supplementary material. Fig [3d
provides an example of a real-world labelled time series.

Overall, the proposed method (h-HSMM) reaches higher
accuracy and weighted accuracy than alternative methods (Fig
E}a). Semi-Markov models perform better than the HMM,
demonstrating the advantage of using non-geometric distribu-
tions. Strong priors, i.e. priors closely following the empirical
distributions of biological state duration also contributes to
better performances. Finally, our results highlight the benefit
of the hierarchical approach to account for user’s tracking
habits and long-term changes in tracking behavior. The state-
specific accuracy is also better with the h-HSMM compared to
other methods (Fig[3b). Specifically, the semi-Markov property
allows a more accurate detection of pregnancies and following
events. In particular, Fig[3¢ (and the example in Fig[3{d) shows
that the duration of pregnancies detected by the h-HMM are
outside biological ranges.

The weighted mean of sample accuracy, i.e. the accuracy
weighted by the uncertainty on the labels at each time-point
(see Methods), is higher than the accuracy (Fig [3p). This
indicates that, as desired, uncertainty is higher on labels that
differ from the ground-truth. In other words, our method is
able to warn against potential labeling mistakes.

One interesting observation is that the accuracies are higher
for the specified models than for the fitted models (Fig
k). When examining the decoded sequences, the differences
appear to originate from sequences with pregnancies during
which users logged few features. For these sequences, only
biologically realistic sojourn distribution for these states allows
to differentiate between pregnancies with births or with losses.

B. Labeling performance on synthetic data

Our results on a synthetic dataset (Fig ) show that our
method is able to recover the ground truth with an accuracy of
98% when variables are always reported (persistent tracking,
no missing data). This provides an approximate upper-bound
on our ability to decode real-world time series.

As expected, we observe a higher accuracy when variables
are reported more frequently (less missing data, see tracking
categories on the x-axis of Fig. db-c) and when more variables
are reported, e.g. tests results are reported in addition to
bleeding (see colored lines in Fig @b and Methods for the def-
inition of tracking categories and the specification of missing
patterns). With time series mimicking the expected tracking
behavior of a user whose purpose is to identify their fertile
window and pregnancies early on, the accuracy is 92%. The
accuracy is of 89% when the tracking behavior is “occasional”,
i.e. with an average tracking frequency of about 10% (Fig b
and online supplementary material).
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Fig. 3. Performances on the Kindara dataset. (a) Accuracy (light green) and weighted mean of sample accuracy (blue) for our proposed approach,
the hierarchical HSMMs (h-HSMM) with several baseline methods. (b) Confusion matrix normalized by the number of time-point in each ground-
truth state (the sum across rows is equal to 1). (c) Distribution of the duration of pregnancies with loss (dark purple) and with birth (light pink) as
detected by our method and the three baseline methods. (d) Example of a time series from a Kindara users with the manual labels (first row), and

the predicted labels by the different methods (second to fifth rows).

States recovered with the highest accuracy are the menses
and pregnancy states (Fig [k, online supplementary material).
The states surrounding ovulation suffer the most from a low
tracking frequency; without a high tracking frequency, it is
impossible to pin-point the day of ovulation. A low accuracy
is expected for these states when tracking frequency is low.

C. Predicting the next period.

Table [[V] provides the mean square error (MSE) on the cycle
length prediction for the baseline method (i.e. average cycle
length of the past four cycles) and for our method, using a
HSMM fitted to the user’s past four cycles data. The table
shows the MSE for predictions done at two different moment
of the on-going cycle. The first row provides the MSE when
the prediction is made on the first cycle day. The second row
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Fig. 4. Performance on synthetic dataset. (a) Example of a simulated sequence of states (ground truth, first row) and observations (last five

rows) and the sequence of hidden states predicted by our method (second row). The third row shows the difference between the two rows (blue
for agreement, red for labeling errors). (b) Accuracy for different tracking frequency (x-axis) and for different sets of tracked variables (colors). (c)
State-specific accuracy for the periods (menses - M), ovulation (O), implantation (pregnancies - P) and births (B).

TABLE IV
MSE ON THE PREDICTED CYCLE LENGTH.
Prediction day MSE Baseline MSE HSMM
At cycle start 17.56 16.99
After ovulation
(10 days before next cycle) 17.56 6.10

provides the MSE when the prediction is made after ovulation,
10 days before the next period. While both method perform
similarly at the beginning of the cycle, our method is able to
detect ovulation and learn the typical luteal phase duration for
that user, providing a much more precise estimate (MSE is
2.88 times smaller) as one progresses through the cycle.

IV. DISCUSSION

Unsupervised labeling of self-reported health records with
biologically-relevant states is a challenging, multivariate prob-
lem given the high frequency of missing data and the changes
in tracking behavior. Here, we presented a hierarchical gen-
erative method based on hidden semi-Markov models. Our
results on synthetic data and real-world data, here self-reported
fertility body-signs, show accurate recovery of the hidden
states sequence. This framework returns the likelihood at each
time-point of this most likely sequence in addition to the
most likely sequence of hidden states. Our results show that

the decoding accuracy is higher when the likelihood is high
which implies that our model is able to adequately quan-
tify uncertainty. In contrast, most medical or psychological
studies currently use methods which are unable to quantify
the uncertainty or the likelihood of their estimates, such as
manual labeling or deterministic rules, to identify the timing
of reproductive events such as ovulation day. Because our
method, i.e. hierachical HSMMs, is able to capture biological
states of specific duration by adequate initialization of the
sojourn distribution and adapt to long-term changes in tracking
behavior, its accuracy is much higher (93%) than that of a
hierarchical HMM (61%) or of a single HSMM (75%). In
addition, our method predicts cycle lengths of ongoing cycles
with a 2.88 times lower error on average than the baseline
method for users with irregular cycles.

Beyond modeling reproductive events, our adaption of
hidden semi-Markov models allows (i) for missingness pat-
terns that may differ between variables, (ii) for censoring
probabilities that may differ between states, (iii) for vari-
ables of different types (continuous, discrete, categorical),
and (iv) for continuous variables specified from different
marginal distributions (e.g. poisson and gaussian). We have
implemented our method in a publicly available R package
(HiddenSemiMarkov) which builds upon the existing im-
plementation of the Viterbi and Forward-Backward algorithms
from the mhsmm package [28].
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The proposed model is ideal for decoding any self-reported
time series such as physical activity patterns, or time series
of incomplete diagnosis data. As an example from the current
pandemic, our hidden semi-Markov model could be fitted to
datasets of covid-19 test results and reported symptoms to
identify the different phases of infection from “uninfected”
to “recovered” over “incubating” and “infectious”. Another
example could consist in inferring someone’s mental health
state over time from various self-reported symptoms in a
tracking app or from the tone of their messages.

In addition to time series labeling, HSMMs are also used to
detect outliers in time series, i.e. values which may be in the
expected variable range of value but that would be unexpected
at that particular moment in the time series. Consequently, our
implementation of HSMM could help detect abnormal missing
data and the failure of a measurement/reporting process.

One limitation of our framework is that within-state depen-
dencies between variables cannot be specified when initializing
the model. However, our simulations show that these depen-
dencies are successfully learned when the model is fitted to a
sequence of observations where these correlations are present
(see online supplementary material, link in the code and data
availability section). In addition to expected functions of a
hidden semi-Markov package, i.e. functions to specify and fit
censored hidden semi-Markov models, simulate time series,
and predict sequences of hidden states using the Viterbi or
the Forward-Backward algorithm, we also provide several
visualization functions for inspecting labeled time series and
model parameters. Finally, we implemented an interactive app
which can be used to manually label time series and/or confirm
predicted labels. This interactive app can be used to create
some ground-truth for time series or to use an interactive
boosting approach to accelerate the fitting process.

This package, in combination with the proposed repro-
ductive model presented here, provide ready-to-use off-the-
shelf tools that any scientist interested in studying health and
biological variations associated with the menstrual cycle can
use. For example, the labeling method presented here can be
used to label large retrospective dataset from menstrual cycle
tracking app and evaluate the changes in reported symptoms at
specific phases of the cycle before and after pregnancies. And,
while users in our dataset were naturally cycling, the proposed
reproductive model could be extended to allow for the detec-
tion of birth-control changes. Therefore, reported symptoms
could be compared before and after birth control transitions.
Our model will also facilitate the study of associations between
the menstrual cycle and the course of chronic conditions [46],
[47]. Indeed, several studies have already shown that patients
which chronic conditions such as inflammatory bowel disease
[48], asthma [49] or systemic lupus erythematosus [S0] report
different level of pains or symptoms at different phases of
the menstrual cycle. Our framework could thus encourage
medical researchers to partner with a tracking app or include
a few questions related to participants’ fertility, such as con-
traceptive use, and their menstrual cycle, such as daily report
of their bleeding. This would ensure a more comprehensive
understanding of the effect of sex as a biological variable on
the course of chronic diseases, the efficacy of treatments or in

epidemiological studies.

Altogether, this study has demonstrated the accuracy of a
hierarchical hidden semi-Markov models for labeling multi-
variate time series with many missing data-points. Our statis-
tical model is especially suited for applications in which the
hidden states may impact the frequency of missing data.
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