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The mammalian circadian clock coordinates physiology with
environmental cycles through the regulation of daily oscillations
of gene expression. Thousands of transcripts exhibit rhythmic
accumulations across mouse tissues, as determined by the balance
of their synthesis and degradation. While diurnally rhythmic tran-
scription regulation is well studied and often thought to be the
main factor generating rhythmic mRNA accumulation, the extent of
rhythmic posttranscriptional regulation is debated, and the kinetic
parameters (e.g., half-lives), as well as the underlying regulators
(e.g., mRNA-binding proteins) are relatively unexplored. Here, we
developed a quantitative model for cyclic accumulations of pre-
mRNA and mRNA from total RNA-seq data, and applied it to
mouse liver. This allowed us to identify that about 20% of mRNA
rhythms were driven by rhythmic mRNA degradation, and another
15% of mRNAs regulated by both rhythmic transcription and
mRNA degradation. The method could also estimate mRNA half-
lives and processing times in intact mouse liver. We then showed
that, depending on mRNA half-life, rhythmic mRNA degradation
can either amplify or tune phases of mRNA rhythms. By comparing
mRNA rhythms in wild-type and Bmal1−/− animals, we found that
the rhythmic degradation of many transcripts did not depend on a
functional BMAL1. Interestingly clock-dependent and -indepen-
dent degradation rhythms peaked at distinct times of day. We
further predicted mRNA-binding proteins (mRBPs) that were impli-
cated in the posttranscriptional regulation of mRNAs, either through
stabilizing or destabilizing activities. Together, our results demon-
strate how posttranscriptional regulation temporally shapes rhyth-
mic mRNA accumulation in mouse liver.
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Studies of circadian rhythms have shown how life on Earth
resonates to the daily recurring environmental cycles, with

profound influences on multiple levels, ranging from behavior to
physiology, all of the way to gene expression rhythms in organs
and individual cells (1, 2). One of the most intriguing questions
in chronobiology is how the transmission of rhythmic signals
from the core oscillator to clock output functions is implemented
across the many regulatory layers of gene expression (3).
Significant fractions, up to 20%, of expressed transcripts are

found to oscillate with a 24-h period in various organs (4). In
mouse liver, genome-wide profiling of transcription and RNA
accumulation over the 24-h day showed that mRNA abundances
can oscillate without rhythmic transcription, suggesting post-
transcriptional control of a significant fraction of the rhythmic
transcriptome (5–8).
Whether the mRNA degradation rate of a transcript, or equiv-

alently its half-life, is constant or rhythmic predicts quantitatively
distinct temporal profiles of mRNA accumulation (9). Specifically,

if an mRNA is rhythmically transcribed but degraded at a constant
rate, the peak of mRNA abundance (phase) will be delayed be-
tween 0 h and maximally 6 h after synthesis, with a damped os-
cillation. However, if degradation rate is also rhythmic, then the
phase delay can flexibly vary between 0 and 24 h, and the relative
amplitudes could be either damped or magnified. Thus, the com-
bined effects of rhythmic synthesis and rhythmic degradation can,
in principle, lead to temporal gene expression profiles with diverse
amplitudes and phases (9).
Mechanisms regulating the degradation of transcripts include the

recruitment of RNA-binding proteins (RBPs) to the 3′-untranslated
region (3′-UTR) of transcripts, as well as targeting of transcripts by
miRNAs (10). Biochemical studies of individual genes have shown
that half-lives of mRNAs can fluctuate during the circadian
cycle (11). Notably, studies on mammalian core clock genes,
such as Per1 (12), Per2 (13), Per3 (14–16), and Cry1 (17), found
fluctuating mRNA half-lives governed by RNA-binding regu-
lators. mRNA degradation also regulates systemically driven
rhythmic transcripts, such as Tfrc, Fus, and Cirbp (7, 18). However,
understanding how the respective contributions of transcription
and mRNA degradation shape temporal regulation of physiology
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and gene expression in a complex organ such as the liver remains
challenging at a genome-wide scale. While transcription during
the diurnal cycle in tissues can be estimated in vivo through Pol
II loading on genes (7), or approximated with nascent RNA (6)
or pre-mRNA (5, 8, 19), direct measurements of mRNA deg-
radation rates, which may also vary over the course of the day,
poses challenges. Experimental approaches using inhibitors of
transcription as well as metabolic pulse labeling of nascent
RNA can yield genome-wide insights in mRNA production and
degradation in eukaryotic cells (20–24). However, these tech-
niques may complicate analyses due to potential biases. For
example, antibiotics that block transcription can arrest growth,
and metabolic labeling of RNAs can inhibit rRNA synthesis
(25, 26). While these methods have been successfully used in
plants (27), they are not currently adapted to measure dynamics
of synthesis and degradation of mammalian mRNAs in vivo,
such as in the intact liver.
Noninvasive techniques such as dual-color labeling of introns

and exons by single-molecular FISH could infer transcription and
degradation rates of individual genes in mouse liver, although this
approach relied on other quantities that are also challenging to
measure, such as transcription elongation rates (28). Recently, a
promising avenue to identify regulatory control points in gene
expression is to integrate measurements on multiple omics levels
with predictions from kinetic production–degradation models (9,
18, 22, 29, 30).
Here, we extended the approach in ref. 9 by developing a

model selection framework to systematically identify the contri-
butions of transcriptional and posttranscriptional regulation from
times series pre-mRNA and mRNA profiles in mouse liver, with-
out additional external input such as mRNA half-lives. We found
that rhythmic transcription with constant mRNA degradation
drove a majority of rhythmic mRNAs (∼65%), while rhythmic
mRNA degradation with constant or rhythmic transcription regu-
lated ∼35%. Importantly, our method yielded estimates of mRNA
half-lives and RNA processing times for thousands of transcripts in
mouse liver. We predicted rhythmically active RBPs that regulate
rhythmic mRNA degradation. Overall, our analysis revealed that
rhythmic mRNA degradation is exploited not only to generate
rhythms but also to flexibly fine-tune oscillatory amplitudes and
peak timings of mRNA rhythms depending on the mRNA half-life.
Finally, we analyzed transcriptomes of liver from Bmal1−/− mice to
show that rhythmic mRNA degradation was often independent of
functional BMAL1, but originated most likely from systemic signals
driven by feeding–fasting or sleep–wake cycles.

Results
A Kinetic Model Identifies Rhythmically Transcribed and Rhythmically
Degraded Transcripts from Total RNA-Seq. The temporal accumu-
lation of mRNAs in cells is governed by many processes including
transcription, (cotranscriptional) splicing, polyadenylation, mRNA
export, and mRNA degradation. In the context of 24-h diurnal
rhythms, we can assume that mRNA levels are for the most part
determined by the kinetics of transcription and mRNA degrada-
tion, since the other RNA processing steps occur on faster time-
scales (28, 31–33). Here, we combined a kinetic model for mRNA
accumulation with time course measurements of pre-mRNA and
mRNA (Fig. 1A) simultaneously quantified from the same bi-
ological samples, using recently published RNA-seq data from
48 total RNA time points collected along a daily cycle with 2-h
resolution in mouse liver (8) (SI Materials and Methods and
Dataset S1).
To confidently use those RNA-seq data to distinguish between

rhythmic transcript synthesis and degradation, we first confirmed
that temporal profiles for the pre-mRNAs of circadian clock
genes, estimated using intronic reads (Materials and Methods),
corroborated with those estimated from nascent RNA sequenc-
ing (Fig. S1A) (6). Indeed, because pre-mRNAs are short lived

and rapidly processed within seconds to minutes (22, 23, 29, 34),
their profiles estimated from total RNA-seq have been shown to
provide good proxies for transcription (5, 19, 30, 35). Genome-
wide, the peak times (also referred to as phases) of pre-mRNA
accumulation for cycling genes identified from total and nascent
RNA-seq data were highly correlated (Fig. S1B). As expected
from previous works on daily rhythmic transcription (5–7, 36),
pre-mRNAs showed a biphasic enrichment near ZT8 (ZT, zeit-
geber time) and ZT20 (Fig. S1 C and D), consistent with the day
and night transcriptional waves in the liver. Moreover, pre-
mRNA levels preceded the accumulation of the corresponding
mRNAs by 1.7 h on average (Fig. S1E). Assuming constant mRNA
degradation, the relative amplitudes of pre-mRNAs would be
higher than those of mRNAs, which is observed on average (Fig.
S1E). However, the observed subset of transcripts with higher
peak-to-trough amplitudes in the mRNA likely indicates post-
transcriptional regulation, as analyzed below. In the following, we
often use the term amplitude for peak-to-trough amplitude, as it is
clear from the context what is meant.
Next, we developed a computational method to analyze rhyth-

mic transcription and degradation, which uses absolute pre-
mRNA and mRNA levels as inputs to distinguish, on a gene-by-
gene basis, between four kinetic models (M1–M4) (Fig. 1A).
These four models assume the following: constant RNA synthesis
(CS) and constant degradation (CS-CD, also termed M1), or
rhythmic synthesis (RS) and constant degradation (RS-CD or M2),
constant synthesis and rhythmic degradation (CS-RD or M3), and
rhythmic synthesis with rhythmic degradation (RS-RD or M4). By
combining a maximum-likelihood approach with the Bayesian in-
formation criterion (BIC), we then select an optimal model. We
first validated this model selection and parameter estimation by
simulating data for all four models using realistic parameters, in-
cluding noise levels (SI Materials and Methods). We found that the
classification accuracy was nearly perfect for M1 and M2 (Fig.
S2A). For M3, the performance depended on the amplitude of the
simulated mRNA, but was near perfect for mRNA amplitudes
above 1.1-fold (Fig. S2B). For M4, the classification properly
identified rhythmic degradation when this changed the amplitude
and peak time of mRNA levels beyond what is obtained from pure
rhythmic synthesis (Fig. S2 A–C). These simulations also allowed
us to determine when the kinetic parameters are reliably identifi-
able, and the regimes in which some parameters are structurally or
practically not identifiable (SI Materials and Methods). In general,
the estimated model parameters followed those in the simulations
(Fig. S2D), including mRNA processing time and half-life, except
for M3. Indeed, in M3, while the ratio of half-life to processing
time is well estimated, we found that the mean half-life alone is
often practically nonidentifiable (37) (Fig. S2 D–F). In this situa-
tion, we nevertheless obtain a lower bound on the relative ampli-
tude of rhythmic mRNA degradation, which is biologically relevant.
Moreover, the peak time of rhythmic degradation, whose precise
estimation depends on the half-life, can still be placed within a
6-h window, from being antiphasic to that of mRNA accumu-
lation, to peaking 6 h after peak mRNA accumulation. To assess
whether half-life could be reliably identified, we implemented
the profiling likelihood (PL) method (37) (SI Materials and
Methods, Fig. S2F, and Dataset S1). We thus conclude that that
despite the identifiability issue for kinetic parameters in M3, the
model selection was overall able to detect even small temporal
changes in rhythmic degradation (Fig. S2B).
Given these validations, we then applied our model to the

total RNA-seq measurements and retrieved the optimal model
as well as the estimated parameters of 12,216 expressed genes in
liver (SI Materials and Methods and Dataset S1). To appreciate
the diversity of the temporal profiles and their regulations, we
first show representative examples from each model (Fig. 1 B–D
and Fig. S3 A–C). As expected, genes assigned to M2 (constant
degradation, RS-CD) showed damped amplitudes and phase
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delays in temporal mRNA accumulation compared with pre-
mRNA. For example, Rorc showed mRNA accumulation with
a short delay and slightly damped amplitude compared with pre-
mRNA (Fig. 1B); its mRNA half-life (hl) was estimated to be
2.1 h. Meanwhile, long-lived genes such as Cp (estimated hl,
7.9 h) had long phase delays (∼6 h) and significantly damped
oscillations (more examples for M2 in Fig. S3A). Our approach
also identified rhythmic mRNAs regulated by rhythmic degra-
dation and constant synthesis (CS-RD, M3), such as Fus (Fig.
1C). This observation is consistent with previous studies showing

that Fus had constitutive RNA polymerase II (Pol II) loading
and its mRNA rhythm was generated posttranscriptionally (7).
Although the absolute value of the mRNA degradation rate for
Fus was unidentifiable, we could estimate a peak-to-trough am-
plitude of at least 1.8-fold. Finally, we found that rhythmic syn-
thesis and degradation (RS-RD, M4) can simultaneously regulate
mRNA rhythms, resulting in amplified amplitudes or long phase
delays (Fig. 1D and Fig. S3C). For instance, Per3 mRNA stability
was previously reported as time dependent, besides being tran-
scriptionally regulated by BMAL1:CLOCK (14, 16, 36). Here, we

Fig. 1. Kinetic model identifies contributions and parameters of rhythmic transcription and rhythmic degradation regulating mRNAs from total RNA-seq.
(A) Temporal accumulations of mRNA and pre-mRNA from time-resolved total RNA-seq were used to fit four kinetic models (M1–M4). The rate equation for
the temporal accumulation of mRNAmðtÞ depends on pre-mRNA pðtÞ and the degradation rate γðtÞ, which are either constant or parameterized with periodic
functions (Materials and Methods). The models allow for constant (C) or rhythmic (R) synthesis (S) and degradation (D) in the four combinations: M1 (constant
synthesis and constant degradation, CS-CD), M2 (rhythmic synthesis and constant degradation, RS-CD), M3 (constant synthesis and rhythmic degradation,
CS-RD), and M4 (rhythmic synthesis and rhythmic degradation, RS-RD). Probabilities for each model are estimated using Schwarz weights (Materials and
Methods); the optimal model for each mRNA (one per gene; Materials and Methods) also yields gene-specific parameters (e.g., mRNA half-life, processing
time, phases, and amplitudes of rhythmic degradation rates). We applied this approach genome-wide. (B–D) Temporal profiles of mRNA and pre-mRNA of
genes assigned to models M2–M4. Data for mRNA (blue) and pre-mRNA (green) with error bars (SE over four biological replicates) are shown as relative
expression, that is, the total normalized counts divided by the average value over time. Solid curves are the fitting for the optimal model and estimated
parameters (blue, mRNA; green, pre-mRNA; red, degradation). Peak times (phase) and amplitudes are summarized in circle plots. The radial scale of these
plots is relative to the largest relative amplitude of mRNA, pre-mRNA, or rhythmic degradation. Absolute half-lives [logð2Þ=γ0, in hours], if identifiable, are
labeled. (B) M2: (Left) Cp had long estimated hl (7.9 h), which damped amplitude of mRNA compared with that of pre-mRNA; (Right) Rorc mRNA was
identified in M2 (RS-CD) with estimated constant hl of 2.1 h. (C) M3: Fus mRNA was identified in M3 (CS-RD). The peak time of rhythmic degradation (RD) was
ZT18.3 and the relative amplitude of RD was 0.3. Mean half-life was nonidentifiable (Materials and Methods). (D) M4: (Left) Per3 mRNA was identified in M4
(RS-RD). The RD showed a maximum at ∼ZT18, and a relative amplitude of 0.5 mean degradation rate was identifiable with mean hl of 1.6 h; (Right) Cbs
mRNA showed a phase delay between mRNA and pre-mRNA > 6 h, which could be explained by M4. Parameters of RD showed a maximum at ∼ZT9 with a
mean hl of 8.6 h.
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observed that Per3 mRNA accumulation oscillated with relative
amplitude comparable, or only slightly higher, than the pre-
mRNA with a delay that was short given the estimated hl of
1.6 h (Fig. 1D, gray line). This short delay was accomplished by
rhythmic mRNA degradation, which varied by approximately
threefold during the day, with the peak at ZT18 (hl, 1 h) and the
trough at ZT6 (hl, 3 h). Without rhythmic degradation, Per3 would
either show dampened oscillations or lower average accumulation
levels. Time of peak mRNA accumulation of Cbs, another M4
gene, occurred more than 6 h later than that of its pre-mRNA.
This long delay follows from the combined rhythmic synthesis
and degradation. These examples illustrate that rhythmic deg-
radation can influence mRNA accumulation profiles in diverse
manners, depending on the relationships of means values, phases,
and amplitudes of mRNA synthesis and degradation, as detailed
mathematically in ref. 9.
Together, these results demonstrate that our model can re-

liably distinguish among different regulatory scenarios leading to
rhythmically accumulating mRNAs, in particular ones involving
rhythmic mRNA degradation. Despite some limitations for con-
stantly transcribed genes, we could also estimate gene-specific
parameters such as mRNA half-lives.

Rhythmic Degradation Regulates 35% of Rhythmically Accumulating
Transcripts. We then focused on the predicted classes for all
rhythmically accumulating mRNAs [6,014 mRNA profiles se-
lected through harmonic regression, false discovery rate (FDR) <
5%] and assessed whether they fell into M2, driven by rhythmic
transcription alone; M3, driven by rhythmic degradation alone; or
M4, driven by both rhythmic transcription and degradation.
Rhythmic transcription with constant degradation (M2) reg-

ulated 3,949 (∼65%) mRNAs (Fig. 2A), consistent with pre-

viously reported results (7, 9). Constant transcription with
rhythmic degradation (M3) regulated 1,167 mRNAs (∼20%).
Genes in M3 were enriched for translation regulation, RNA
transport, and mRNA catabolic processes (Dataset S2). Last,
rhythmic transcription and degradation combined (M4) con-
trolled 898 mRNAs (15%), whose functions were enriched for
lipid and steroid biosynthetic processes, and circadian regulation
(Dataset S2).
To assess these results using an independent approach, we ap-

plied the production–abundance test (PA test) to identify tran-
scripts subjected to posttranscriptional regulation (9) (Dataset S3).
The PA test is based on the null hypothesis of constant degrada-
tion rather than the data-driven model selection developed here,
and is thus limited to the rejection of models M1/M2. The PA test
requires proxies for transcription (Pol II ChIP, nascent RNAs, or
pre-mRNAs), mRNA accumulation, and experimentally mea-
sured mRNA half-lives [e.g., from mouse fibroblast cell lines (21,
38)]. Transcripts identified as incompatible with M1/M2 by the PA
test were clearly enriched in genes classified as M3 and M4 (Fig.
2B). Conversely, genes assigned to M3 and M4 by our method
displayed overall lower significant scores by the PA test compared
with M1 and M2 genes (Fig. 2B).
We then investigated the phases and amplitudes of M2–M4

genes. We observed that, although the mechanisms generating
the rhythms differed, peak times of rhythmic mRNAs were
similar across the three groups (Fig. 2C). However, even though
genes in M4 were more abundantly expressed compared with
those in M2 or M3 (Fig. S3D), indicating that they might have
longer half-lives, the peak-to-trough amplitudes of oscillating
mRNAs in M4 were larger than ones in M2 or M3 (Fig. 2D; see
also further discussion below). Interestingly, we found that

Fig. 2. Rhythmic mRNA degradation regulates 35% of rhythmically accumulating mRNAs (∼20% in M3 and 15% in M4). (A) Numbers and percentages of
rhythmic mRNAs (6,014 with FDR < 0.05, harmonic regression) identified in M2 (3,949), M3 (1,167), and M4 (898). (B, Left) Percentages of mRNAs subjected to
RD estimated using the PA test, which were assigned to either M3 or M4 by our method. The analysis is stratified in function of the stringency of the PA test
(log10 P values). We used published measurements of half-lives from cell lines as input for the PA test. (Right) Distribution of P values from the PA test
according to the classification from our method. (C and D) Distributions of peak times (C) and amplitudes (D) of rhythmic mRNAs in M2–M4.
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mRNAs in M2, M3, and M4 more often showed a rhythmic poly(A)
tail length compared with M1 (Fig. S3E), potentially due to the
influence of poly(A) tail length on mRNA stability (39) and pos-
sibly reflecting the proposed coupling between rhythmic transcrip-
tion and polyadenylation (39).

Estimated mRNA Half-Lives and RNA Processing Times in Mouse Liver.
In addition to disentangling transcriptional and posttranscriptional
contributions governing temporal mRNA profiles, our models
estimated peak time and amplitude of rhythmic degradation as
well as parameters that are otherwise difficult to estimate in vivo,
notably mRNA degradation rate and pre-mRNA processing time
(Fig. 3 A and B, Fig. S4A, and Dataset S1). mRNA half-lives in
M2 and M4 (half-lives of M3 are not shown due to poor identi-
fiability; see above) were overall short compared with the 24-h
day, with a median of ∼2.5 h, consistent with the observation that
most of mRNAs continued to oscillate (3). M4 was enriched in
long half-lives compared with M2, with a long-tailed distribution
ranging up to 20 h (Fig. 3A).
mRNA half-lives of several core clock and clock output genes,

for example, Clock, Per1/3, Nr1d1/2, and Dbp, were estimated
between 1 and 2 h, which is in the range of estimates in cell
culture (40) (Fig. 3C). Although the estimated half-lives in the
liver correlated with measurements in NIH 3T3 cells (38) (Fig.
S4A), the significant spread probably reflects cell type-specific
degradation kinetics, in addition to technical variability. Of note,
comparison of measured half-lives in NIH 3T3 and mouse em-
bryonic stem cells (41) shows a similar dispersion (Fig. S4B).
Since the PA test is sensitive to the half-lives used as input, the
partial overlap between the two methods might reflect cell type-
specific half-lives (Fig. 2B). Overall, half-lives estimated in mouse
liver were shorter compared with those in cell lines. Likewise, the
effective pre-mRNA processing times could be estimated for
M2 and M4 (Fig. 3B). The found values in the range of 5–10 min
are similar with earlier estimates in cell culture models (22, 23, 29,
42). Median processing times of mRNAs in both M2 and M4 were
found around 7 min. Overall, we estimated half-lives and pro-
cessing times for over 3,000 mRNA transcripts in mouse liver
(Dataset S1), including those of core clock and clock output genes
(Fig. 3C). At the genome-wide level, we observe a correlation
between processing times and mRNA half-lives (Fig. S4A), which
has been previously observed in mouse dendritic cells (22).

Phases and Amplitudes of Rhythmic mRNA Degradation. Considering
only well-identified mRNA degradations for M3 and M4 (Ma-
terials and Methods), we found that the estimated phases and
amplitudes (Fig. 4) were consistent with those from the PA test
(Fig. S4C). Peak times of RD in M3 were distributed throughout

the day (Fig. 4A and Fig. S4D) but depleted around the day–
night transition at ZT12. By contrast, peak times of mRNA
degradation in M4 showed a marked peak at ZT12. Intriguingly,
genes within this peak (between ZT10 and ZT16) encoded for
proteins related to the endoplasmic reticulum and vesicle trans-
port to the Golgi, such as Insig1, Sec13, Sec22b, and Sec23b (43,
44) (Dataset S4A). The amplitudes of mRNA degradation for
M3 and M4 showed similar distributions (Fig. 4 and Fig. S4D)
ranging up to 16-fold, with (∼30%) showing amplitudes greater
than 2-fold. Several of those transcripts with high degradation fold
changes (log2 FC > 2.5) were linked with RNA splicing [gene
ontology (GO) term analysis, P = 9e-4].

Rhythmic mRNA Degradation Serves as an Amplifier for Long-Lived
mRNAs and Phase Tuner for Short-Lived mRNAs. Why would a cell
use rhythmic degradation when it can generate rhythms tran-
scriptionally? To address this question, we first analyzed the

Fig. 3. Distributions of estimated half-lives and processing times of mRNA in mouse liver. (A) Distribution of estimated mRNA half-lives [logð2Þ=γ0, in hours] in
M2 andM4 for transcripts with identifiable half-lives. Vertical lines indicate the medians of the distributions. (B) Distribution of pre-mRNA processing times (1=k, in
minutes) in models M2 and M4. Vertical lines indicate the medians of the distributions for transcripts with identifiable parameters. (C) Half-lives and processing
times of core clock and clock output mRNAs. We plotted standard errors (SEs) of the estimates when available (SI Materials and Methods and Dataset S1).

Fig. 4. Phases and amplitudes of rhythmic mRNA degradation. (A and B)
Distribution of estimated phases and peak-to-trough amplitudes (in log2) of
rhythmic degradation in M3 (A) and M4 (B) for transcripts with identifiable
and high-confidence degradation parameters (coefficient of variation of
estimated relative amplitude <0.4 and SE of estimated phase <1 h; SI Ma-
terials and Methods and Dataset S1).
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phase relationship between RS and RD for genes with identifi-
able and high-confidence estimated phase and amplitude (Ma-
terials and Methods) in M4. If the role of RD were to amplify
amplitudes from transcription regulation, we would expect an
optimal delay of 12 h between the peak times of RD and RS (9).
Surprisingly, the distribution of delays between RD and RS was
broad, showing two modes near 6 and 20 h (Fig. 5A), suggesting
that RD plays a role beyond boosting amplitudes. Moreover, we
found that genes with delays near 12 h had longer mRNA half-
lives (Fig. 5A) and showed ratios of amplitudes in degradation vs.
synthesis rates that increased with half-life (Fig. 5B). Meanwhile,
genes with 6- and 20-h delays showed comparable relative am-
plitudes for RD and RS.
To simplify the discussion, we defined three classes (C1–C3)

of mRNAs (see colors in Fig. 5A). C1 had long-lived mRNAs
(hl > 5 h); C2 short-lived mRNAs with short delay between RD
and RS (hl < 5 h, delay < 12 h); and C3 had short-lived mRNAs
with long delay (hl < 5 h, delay > 12 h). For C1, the 12-h delayed
RD (relative to the peak synthesis) increased amplitudes of
mRNA oscillations, which were even higher than those of the
pre-mRNAs (Fig. 5C). Indeed, if mRNA degradation for those
genes were set constant in simulations, mRNA oscillations were
strongly dampened (Fig. 5C). Meanwhile, the peaks times of
these mRNAs were not much affected by RD due to the 12-h
phase delay between RD and RS (Fig. 5D). For illustration, rhyth-
mic degradation amplified mRNA amplitudes of Smagp and Acat3
mRNA without affecting the phases (Fig. 5E and Fig. S5A). Thus,
for C1 mRNAs, a possible role of RD is to compensate the damping
caused by the mRNA half-life while maintaining the phase.
In contrast to mRNAs in C1, the amplitudes of short-lived

mRNAs in C2 and C3 were not much influenced by RD (Fig. 5 F
and I). However, we found that the peak times of mRNAs were
either advanced (C2) or delayed (C3) (Fig. 5 G and J) relative to
simulated constant degradation. Rhythmic degradation of
mRNAs in C2 advanced peak times of mRNAs by an average of
1.8 h (Fig. 5G), and thus mRNAs in C2 oscillated almost syn-
chronously with the pre-mRNAs (Fig. 5G), and with comparable
amplitudes (Fig. 5F). Many core clock and clock-controlled
genes were found in C2 (Fig. 5H and Fig. S5B), illustrating the
role of RD in advancing phases. Such genes included Wee1 ki-
nase (Fig. 5H), an inhibitor of CDK1 during the cell cycle,
reported as controlled by the circadian clock (45). Finally, we
found that RD delayed peak times for mRNAs in C3 by an av-
erage of 2.7 h (Fig. 5J), while maintaining amplitudes (Fig. 5I).
We note that some mRNA peak times were delayed beyond 6 h
(the maximal allowed with only rhythmic transcription) com-
pared with that of pre-mRNA (Fig. 5K and Fig. S5C). For ex-
ample, rhythmic degradation enabled Slc4a4 mRNA to peak at
ZT6, 6.5 h later than the pre-mRNA (Fig. 5K), while assuming
constant degradation we would have expected only a 2-h delay.
Our results thus suggest that rhythmic degradation of short-

lived mRNAs tends to fine-tune phases, allowing mRNAs to
either oscillate nearly in sync with pre-mRNAs, or delay peak
times to beyond theoretical limits under constant degradation
assumptions. On the other hand, rhythmic degradation in the
case of longer-lived mRNAs primarily increased amplitudes.

BMAL1 Dependence of Rhythmic mRNA Degradation in Liver. We
next investigated the roles of the circadian clock and of rhythmic
systemic cues in the temporal regulation of rhythmic mRNA deg-
radation. For this, we compared the RNA-seq profiles from the
WT ad libitum (AL) fed mice used so far with profiles from WT
and Bmal1−/− mice under night-restricted feeding (RF) (food
available only from ZT12 to ZT24, the period of activity for mice)
(8). We focused on the genes classified in M3 under AL feeding,
whose rhythmic mRNA expression is solely driven by rhythmic
degradation (Dataset S5). First, the majority (79%, n = 920) of
these mRNAs continued to oscillate under RF with the same

rhythmic parameters as under AL feeding (Fig. 6A, three top
groups; see Materials and Methods for the selection of the
groups), which is not surprising since such night RF only slightly
perturbs the feeding rhythm (46). Second, loss of BMAL1 did
not affect the rhythmic expression of 569 out of the 920 mRNAs
(62%, top group in Fig. 6A), suggesting that a majority of rhythmic
mRNA degradation does not depend on BMAL1, but may instead
be regulated by systemic signals originating from feeding rhythms,
light–dark, temperature, or sleep–wake cycles. Of the remaining
351 rhythmic mRNAs that were altered in Bmal1−/− (38%, second
and third groups in Fig. 6A), 292 (32%, third group) became ar-
rhythmic and 59 (6%, second group) remained rhythmic with
shifted phases or altered amplitudes, indicating that their regula-
tion depends on both BMAL1 and systemic cues.
Interestingly, BMAL1-dependent and -independent mRNAs

showed distinct phase distributions (Fig. 6B): mRNAs whose
rhythmic degradation was BMAL1-independent (and thus driven
by feeding rhythms or systemic signals) were enriched in the late
morning (ZT6–ZT8), while those with BMAL1-dependent deg-
radation enriched in the late night (ZT23). GO term analysis on
these two groups (SI Materials and Methods and Dataset S4 B–D)
showed that the BMAL1-dependent group was enriched in reg-
ulators of actin filament polymerization or the positive regulation
of WNT signaling, while genes whose degradation was driven by
rhythms in feeding or systemic signals were enriched in mRNA
processing and transport pathways. Interestingly, this latter cate-
gory contained genes related to poly(A) tail regulation and deg-
radation (Pan2, Parn, Pabpc1, and Magohb) or involved in the
promotion of nonsense mediated mRNA decay (Smg7, Upf3b,
Ncbp2, and Etf1).
Finally, we sought to identify putative regulators underlying

rhythmic mRNA degradation in each group. We focused here on
mRNA binding proteins (mRBPs) since mRNA rhythms were
shown to be only weakly affected by perturbation of miRNA
biogenesis in mouse liver (19). Briefly, we first used known
mRBP target recognition specificities (binding motifs) (47) to
scan the 3′-UTR regions of each mRNA. Next, we modeled the
rhythmic degradation rates for each transcript as a linear com-
bination of unknown mRBP activities associated with each
mRBP binding motif (SI Materials and Methods and Dataset S6)
(35, 48, 49). This method allowed us to predict the phase and
amplitude of mRBP activities that optimally explained the
rhythmic degradation rates of genes in the two main groups (Fig.
6C). In support of these predicted degradation activities, can-
didate mRBPs showed rhythmic accumulations in proteins from
total liver extracts (50). Interestingly, mRBPs such as MATR3,
NCL, FXR1, and NCL, oscillated in opposite phase of predicted
degradation activity, corroborating with previous studies that
these mRBPs can stabilize mRNAs (51–53) (Fig. 6D). Bio-
chemical studies of SYNCRIP (HNRNP Q) have reported to
increase (54) as well as decrease mRNA stability (15), depending
on the specific mRNA studied.
Taken together, our analyses suggest that mRNA accumulation

in the liver is influenced by both clock-dependent and -independent
control of mRNA stability, likely through the action of specific
mRBP activities.

Discussion
We developed a computational method to model temporal total
RNA-seq profiles, which can distinguish contributions of tran-
scription and mRNA degradation toward rhythmic mRNA ac-
cumulation. Applied to liver transcriptome, we found that about
35% of rhythmic mRNAs are regulated at the posttranscriptional
level, most likely through rhythmic mRNA degradation. Such
posttranscriptional rhythms could amplify the amplitudes or tune
the phases of mRNA oscillations, enabling precise temporal
control of mRNA levels. For example, we found that the phase
of mRNA of clock genes, such as Per1 and Per3, and clock output
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Fig. 5. Rhythmic mRNA degradation serves as an amplifier for long-lived mRNAs and phase tuner for short-lived mRNAs. (A, Left) Histogram of phase delays
in M4 (peak time of RD minus peak time of RS). (Right) Phase delay vs. mRNA half-lives suggests three classes of transcripts. C1, Long-lived mRNAs (hl > 5 h;
green); C2, short-lived mRNAs with short delay (hl < 5 h, delay < 12 h; orange); and C3, short-lived mRNAs with long delay (hl < 5 h, delay > 12 h; dark red). (B,
Left) Histogram of relative amplitude ratio ð«γ=«sÞ between RD and RS. (Right) Scatterplot of relative amplitude ratio vs. mRNA half-life color-coded for C1–C3.
(C) Scatterplot of relative amplitudes [(maximal expression −minimal expression)/2 × (mean of expression)] of mRNAs in C1 vs. predicted under assumption of
constant degradation (Left) and vs. relative amplitudes of pre-mRNAs (Right) in log scale. (D) Scatterplot of peak times of mRNAs in C1 vs. predicted peak
times under assumption of constant degradation (Left) and vs. peak times of pre-mRNAs (Right). (E, Left) Temporal profiles of pre-mRNA (green) and mRNA
(blue) of C1 gene Smagp (values are normalized read counts divided by the temporal average; error bars show SE over four biological replicates). The gray line
shows predicted mRNA profile under assumption of constant degradation (relative amplitude of mRNA degradation «γ set to zero). (Right) Arrows in the circle
plot depict the phase (angular coordinate) and relative amplitude (radial coordinate) of pre-mRNA (green), mRNA (blue), and predicted mRNA under the
assumption of constant degradation. (F–H) Idem as C–E for genes in C2. Rhythmic degradation advances peak times of mRNAs in C2 without affecting relative
amplitude. Pre-mRNA and mRNA of Wee1 oscillates with comparable phases, whereas assuming constant degradation, its mRNA would show larger phase
delays. (I–K) Idem for genes in C3. Rhythmic degradation delays peak times of mRNAs in C3 without affecting relative amplitude. Pre-mRNA and mRNA of
Slc4a4 show large delays, whereas assuming constant degradation, its mRNA would show smaller phase delays (K). (A–K) Transcripts were selected as for Fig.
4, with, in addition, a threshold on the rhythmicity of their pre-mRNA and mRNA to ensure reliable phase estimation (FDR < 0.05 rhythmicity test, and relative
amplitude >0.1; Materials and Methods).
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genes, such as Wee1 and Tef, are tuned to match that of pre-
mRNA accumulation, allowing phase to be encoded transcrip-
tionally. In addition, this method allowed us to infer mRNA half-
lives and processing times of over 3,000 transcripts in the intact
and unperturbed mouse liver.
The kinetic models analyzed here provide more robust an-

swers regarding the role of posttranscriptional regulation than
simpler comparisons between oscillating pre-mRNA and mRNA.
Indeed, even if pre-mRNA and mRNA are both rhythmic, rhythmic
posttranscriptional regulations can still be involved. To overcome
these caveats, our kinetic model takes into account relationships of
peak times, amplitudes, and read counts of pre-mRNA and mRNA
accumulations. Importantly, in contrast to previous methods (9),
ours does not require experimentally measured mRNA half-lives as
input, which are usually measured in cell culture experiments, but
rather leverages the temporal RNA-seq profiles to estimate mRNA
half-lives in intact organs over time of day.
Although our method might underestimate the contribution of

weakly rhythmic degradation, especially for transcripts with
rhythmic pre-mRNA and mRNA levels (Fig. S2), our estimated
35% of rhythmic mRNAs subjected to circadian mRNA degra-
dation is consistent with previous explicit kinetic models (7, 9).
Other studies have found that a larger fraction of rhythmic
mRNA (78%) could be regulated by rhythmic degradation (5),
which may be partially due to low and noisy intron levels inter-
preted as constant synthesis.

Clearly, our mathematical model relies on a several assump-
tions regarding the kinetics of posttranscriptional processes. In
particular, we assume that processes such as splicing, polyadenylation,
or nuclear export occur on a faster timescale compared with mRNA
degradation. In some cases, these assumptions might not hold. For
instance, Cirbp was reported to be regulated on the level of both
its splicing efficiency and mRNA degradation (18). Nevertheless,
Cirbp was correctly classified as subject to posttranscriptional reg-
ulation. For simplicity, we have interpreted our results assuming
that the profiles of pre-mRNA reflected the transcription rates.
Although this might not always be the case, such as for Cirbp,
where the oscillatory pre-mRNA originates from rhythmic splicing
efficiency rather than transcription, the genome-wide similarity of
nascent RNA and pre-mRNA profiles (Fig. S1 A and B) suggest
that rhythmic transcription is the most frequent scenario. More-
over, the distribution of estimated mRNA half-lives and RNA
processing times are in the range of previously measured values,
indicating that our simple model captures the main dynamics reg-
ulating mRNA abundances. Regarding mRNA degradation, we
have not considered the interesting possibility that mRNA aging, for
example, through the shortening of poly(A) tails, might require
more complicated modeling. Since a group of transcripts has been
shown to exhibit deadenylation rhythms (39), a future extension of
the model might explicitly consider mRNAs of different ages, and
possibly infer aging parameters from measurements of poly(A) tail
length distributions. In the current description, an effective rhythmic

Fig. 6. BMAL1-dependent and -independent rhythmic mRNA degradation. (A) Heat map of mRNA relative expression of genes classified in M3 in mouse liver
in the following conditions (biological replicates are averaged): WT ad libitum (AL WT, Right; this condition was used for the main analysis, 12 times points,
48 samples), WT restricted feeding (RF WT, Middle; 6 time points, 12 samples), and Bmal1−/− restricted feeding (RF Bmal1−/−; 6 time points, 12 samples). All
data are from ref. 8 and provided in Dataset S5, together with the parameter estimates. Genes above the thickest horizontal separator have similar rhythmic
parameters in AL WT and RF WT. The two thinner horizontal separators split the genes into those that keep the same rhythmic parameters in RF Bmal1−/−

(Top, 569 mRNAs, group 1), those that are expressed in a constant manner (Bottom, 292 mRNAs, group 2), and those that exhibit 24-h oscillations with altered
rhythmic parameters (Middle, 59 mRNAs). (B) mRNA peak time distributions for groups 1 and 2. (C) Phases of inferred activities of mRBP motifs in groups 1
(blue) and 2 (red). Activities are inferred using a penalized linear model that integrates mRBP binding site at the 3′-UTR of mRNA with phase and amplitude of
mRNA degradation (Materials and Methods). Angles on the circle indicate peak activity times (ZT times). (D) Inferred activities and protein abundance of
candidate mRBPs over time (50). mRBPs are predicted to regulate stability of transcripts from group 1 (plotted in blue), from group 2 (in red), or in some cases
from both groups (in purple). Rhythmic activities that are antiphasic to rhythmic protein accumulation predict a stabilizing effect.
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degradation rate could also reflect a rhythmic shift in the average
poly(A) tail length, coupled with length-depended mRNA lifetimes.
In this study, we also investigated potential causes of rhythmic

mRNA degradation. mRNA half-lives are determined by struc-
tural elements such as the length of their poly(A) tail and sec-
ondary structure influencing the accessibility and binding of
specific mRBPs or miRNAs (10). While in mouse liver miRNAs
have been previously shown to only marginally drive rhythmic
accumulation, the potential role of rhythmic actives mRBPs has
not been identified genome-wide. Moreover, the respective roles
of the circadian clock or other rhythmic cues such as feeding/
fasting cycles were not known. Here, our analysis not only predicted
several mRBPs underlying rhythms in mRNA degradation, but we
could also distinguish between regulators with clock-dependent as
well as clock-independent activities, showing approximately equal
regulatory proportions. Temporal protein accumulation profiles for
the predicted mRBPs supported some of the identified candidates
and, interestingly, distinguished between stabilizing and destabiliz-
ing effects on mature mRNAs.
We thus found that systemic signals as well as the local clock

can drive rhythmic mRNA degradation. Future studies integrating
posttranscriptional with transcriptional regulation to explain clock-
and system-driven mRNA abundances may reveal the coordination
of DNA- and RNA-binding regulators that shape temporal tran-
scriptomes in diverse mammalian tissues.

Materials and Methods
For each section below, further details are included in SI Materials andMethods.

Data Processing for Total RNA-Seq in Mouse Liver Around the Clock. To
quantify the temporal accumulation of pre-mRNA and mRNA in mouse liver,
we used total RNA-seq data from ref. 8 (GEO accession no. GSE73554), in
which livers of wild-type C57BL/6J male mice between 10 and 14 wk of age,
under 12-h light/12-h dark and ad libitum feeding conditions, were collected
every 2 h during 1 d (four biological replicates = 48 time points in total).

Modeling the Temporal Profiles of mRNA and Pre-mRNA. Here, we modeled
the temporal accumulations of mRNA with the following differential
equation:

dmðtÞ=dt = kpðtÞ− γðtÞmðtÞ,

in which m(t) and p(t) denote the temporal accumulations (concentrations)
of mRNA (m) and pre-mRNA (p), respectively. In M1 and M3, pre-mRNA
accumulation is described by a constant p0. γ(t) describes temporal varia-

tion of mRNA degradation rate. In M1 and M2, γ(t) is set to a constant γ0. The
parameter k represents the rate of pre-mRNA processing (defined here as
the effective rate for processing of pre-mRNA into mRNA, combining in-
termediate steps such as splicing, pre-mRNA decay, and nuclear export) from
pre-mRNA to mRNA, which is assumed to be fast on the scale of γ(t) and can
thus be approximated as a gene-specific constant. For each gene, temporal
profiles of mRNA and pre-mRNA were fitted with the four models (M1–M4)
and the kinetic parameters, as well as their SEs and identifiabilities,
were estimated.

Model Selection with the Bayesian Information Criterion. To select the optimal
model for each gene, given the measured read counts of mRNA and pre-
mRNA, an approach combining the maximum likelihood (55–57) and the
Bayesian information criterion (BIC) was used: BIC = −log(L) + K log(N), in
which log(L) is the log-likelihood, K is the number of parameters, and N is
the number of data points.

Validation of the Method with Simulations. To validate our model selection
and parameter estimation, we tested the method with simulated data
(200 synthetic genes) for models (M1–M4), taking kinetic parameters from
realistic distributions.

Inference of mRBPs Involved in Rhythmic mRNA Degradation. To infer mRBPs
with rhythmic activities from the identified rhythmic mRNA degradations, we
used genes from the two groups of Fig. 6 and mRBP motif library in ref. 47.
3′-UTR of mRNAs (RefSeq) for those genes were scanned with FIMO (58) to
find hits to mRBP motifs, which are potentially responsible for rhythmic mRNA
degradation. The rhythmic variation of mRNA degradation (in log scale) was
assumed as a linear combination of diurnal activities of mRBP motifs [analo-
gous to linear models for transcription factor activities (35, 48)]. To control for
overfitting and also redundancy of motifs, we employed regularized elastic-
net linear regression [implemented in R package glmnet (59)].

Rhythmicity Assessment Temporal RNA-Seq Datasets. Rhythmicity in mRNA
abundances for transcripts classified in M3 (Dataset S1) in different condi-
tions was assessed using a model selection approach as described in ref. 8.

GO Analysis. GO analysis was performed using the TopGO R package (60).
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