Applies the C-PASS procedure for PMDD and MRMD diagnoses
CPASS.Rd
This function implements the C-PASS procedure and returns a list of 6 tables of summaries and diagnoses at different levels (subjects, cycles, domains, etc).
Arguments
- data
a
cpass.data
data frame that contains the symptom DRSP scores reported by the subjects. To transform your data into acpass.data
object, use the functionas_cpass_data()
.- silent
a
logical
specifying is the function should print messages or run silently. Default isFALSE
.
Value
The cpass function returns a list with 6 elements;
each of them is a table (data.frame
):
subject_level_diagnosis
The subject-level diagnoses
cycle_level_diagnosis
The cycle-level diagnoses
DSM5_domains_level_diagnosis
The diagnoses at the DSM5 DOMAINS level
DRSP_level_diagnosis
The diagnoses at the individual DRSP items level
daily_summary_DRSP
The daily summary of each DRSP for each subject
summary_DRSP
The percent change in DRSP items between the pre- and post-menstrual phase
Examples
data(PMDD_data)
cpass_input <- as_cpass_data(PMDD_data, sep_event = "menses")
#> Number of subjects: 20
#> Total number of cycles: 37
#> Percentage of missing scores: 3.23 %
#> Warning: The 'phase' column will be over-written
#> Percentage of missing scores
#> (in pre- & post-menstrual phases): 3.23 %
output <- cpass(cpass_input)
#> PME diagnosis is still experimental and has not been validated clinically. Please, use with caution.
head(output$subject_level_diagnosis)
#> # A tibble: 6 × 15
#> subject Ncycles_tot Ncycles N_PMDD N_MRMD N_PME pmddcycprop mrmdcycprop
#> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl>
#> 1 2 2 2 2 2 2 1 1
#> 2 15 1 1 NA NA NA NA NA
#> 3 17 2 2 0 1 0 0 0.5
#> 4 21 2 2 0 0 0 0 0
#> 5 25 2 2 0 2 1 0 1
#> 6 27 2 2 0 1 1 0 0.5
#> # ℹ 7 more variables: pmecycprop <dbl>, PMDD <lgl>, MRMD <lgl>, PME <lgl>,
#> # dxcat <dbl>, dx <fct>, avgdsm5crit <dbl>